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A low-temperature expansion for the free energy density of lattice animals is 
derived. Analysis of the series yields a collapse transition temperature of 
T c-~ 0.54, in close agreement with previous estimates. It is demonstrated that 
ap.k, the number of p-particle, k-bond animals, obeys the asymptotic scaling law 
log %,~ ~p~,(k/p)+ o(p). The low-temperature series and numerical data are 
used to estimate the scaling function. 
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1. I N T R O D U C T I O N  

Lattice animals--collections of particles occupying the sites of a 
regular lattice and connected by a network of nearest-neighbor bonds are 
of continuing interest in theories of nucleation (1 3) and percolation, (4'5) 
where they serve as a model of physical clusters. More recently, animals 
have been proposed as a model for branched polymers. (6- 10) In particular, 
the collapse of a large branched polymer, as a function of polymer-solvent 
affinity, has been investigated by introducing a nearest-neighbor attractive 
potential between particles within the animal. At low temperatures (corres- 
pond to poor solvent), the animal is expected to assume a compact form, 
while at high temperatures a tenuous or ramified structure is favored 
entropically. Recent studies (6'7) indicate that in the infinite-size limit, 
animals undergo a second-order transition at the collapse temperature, To. 
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466 Dickman and Schieve 

The statistics, thermal behavior, and geometry of lattice animals have 
been investigated via enumeration (1~ renormalization group (8'12), 
phenomenological renormalization (6,~3), and Monte Carlo (7'~4-18) methods. 
In this paper we shall present new low-temperature expansion and 
numerical results bearing on the collapse transition of a single lattice 
animal, and on the asymptotic scaling behavior of the number of con- 
figurations of given size and degree of bonding. 

Our earlier studies have focused on the p-particle animal partition 
function 

Zp( T) = Z ek(X)/~'= y" %,ke k/~ (1.1) 
x t  N ( X )  = p k 

The first sum is over translationally nonequivalent, connected con- 
figurations X =  {x~,..., xp}, where xi lies in some lattice, e.g., Z J. N(X) is 
the number of particles, k(X) is the number of nearest-neighbor bonds, and 
T is the temperature, expressed in units such that elk B = 1 (e is the nearest- 
neighbor attractive potential, and k8 is Boltzmann's constant). In the 
second expression, tp, k is the number of translationally nonequivalent, p- 
particle, k-bond connected configurations. We have employed enumeration 
and Monte Carlo methods to determine tip,k, and used the results to 
estimate scaling behavior (~8/and to compute specific heats. (7) In this paper 
we derive a low-temperature expansion for the animal free energy density. 
To our knowledge, this is the first time that such an expansion has been 
derived for a system subject to a connectivity constraint. 

In Sec. 2 we derive the low-temperature expansion for the free energy 
density, and discuss critical behavior. Some of the details of the derivation 
are given in Appendices A and B. In Sec. 3, numerical data for animals of 
up to 100 particles is used to test a previously proposed scaling law. The 
data is then reanalysed in light of the asymptotic scaling formula proven in 
Appendix C, yielding an estimate for the scaling function in the noncom- 
pact regime. Finally, in Sec. 4 the low-temperature series is used to derive 
an expansion for the asymptotic scaling function in the compact (low-tem- 
perature) regime. In this paper we consider the square lattice, Z 2, only. 
Preliminary results for other lattices suggest similar quantitative behavior. 

2. LOW-TEMPERATURE EXPANSION 

2.1. Approximate Partition Function 

In this section we derive a low-temperature expansion for the free 
energy density of animals in the square lattice. Since the animal partition 
function, Eq. (1.1), is not directly amenable to a systematic low-tem- 
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perature expansion, we first show how the free energy may, at low tem- 
peratures, be computed from an approximate partition function, which 
resembles the grand partition function for a lattice gas. Our derivation rests 
on the assumption that, at low temperatures, animals are compact. Define 
the perimeter of an animal as the minimal, simple closed path, residing in 
the dual lattice, which encloses all sites occupied by the animal, as depicted 
in Fig. 1. (Note that vacant sites within the animal are also enclosed.) Let 
B(X) be the perimeter length of animal configuration X. (B(X) is the num- 
ber of lattice bonds which cut the perimeter.) We shall say that animals are 
compact at temperature T if, for some b(T) < oo, 

~ ; a ( T ) -  lim p- l l ogZp(T)=  lim p - l l o g  ~" e k ( x ) / T  (2.1) 
p ~ oo p ~ oo X I B ( X )  <-% b x ~ ; N ( X  ) = p 

i.e., if configurations with perimeter larger than bx f  ~ make a negligible con- 
tribution to the free energy. The existence of the animal free energy density, 
-Tt%(T), was demonstrated in Ref. 21. Clearly, Eq. (2.1) holds for T = 0  
(b(0) = 4), and we shall assume that it remains true for 0 < T <  To. There is 
strong numerical evidence, (6'7) although as yet no rigorous proof, that 
animals exhibit a collapse transition at a finite temperature, below which 
they are compact. 

At low temperatures ( T <  To), a p-particle animal may be pictured as a 
compact region of p occupied and v vacant sites. (This picture must of 
course fail at To, for then b(T) --+ co.) If all p + v sites were occupied, there 
would be 2(p + v) - O(x/p ) bonds. Each isolated vacancy represents a loss 
of four bonds, and each nearest-neighbor pair of vacancies yields a net gain 
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Fig, 1. A lattice animal and its perimeter (broken line). 
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of one bond over the situation in which the vacancies are separated by 
more than a unit distance. Vacancies at sites x~ and x j e Z  2 therefore 
interact with an effective potential 

u(Ix,-xj l) :  
~- 00~ X i ~  X j 

-1 ,  Ix~- xjl =1 

O, otherwise 

(2.2) 

(We wish to exclude the possibility of two vacancies "occupying" the same 
site.) The energy of a compact (B(X)<~b(T)x/P)p-particle animal with 
vacancies at sites Xl ..... x~ within its perimeter is - 2 ( p - v ) +  
U(xl ,..., x~) + O(x/p), where 

U(xl ..... xO= ~ u(Ix,-xj[) (2.3) 
l < ~ i < j ~ v  

According to the compactness assumption, Eq. (2.1), we may, for pur- 
poses of computing the free energy density, restrict the partition function to 
configurations with perimeter B<~b(T)x/p. All such configurations fit 
inside a square of side �89 Thus if we define 

Zp(T)  = ~ e k~x)/T (2.4) 
X c Ab2(T)p/41N(X) p 

where A N C  Z 2 is the smallest square containing at least N sites, then we 
are assured that limp~ ~ p-~ log Z~(T)= ~ca(T). 

For p = q2 ( q  = 1, 2,  3, . . . ) ,  define the modified partition function 

. . . .  ~ 2v ~c  -- U(XI,...,~0)/r (2.5) z ; ( r )  = ~ Y, ~! e 
m = 0  21,...,xv~Ap+v 

where ~ = e 1/T v =m(2q  + m) is the number of vacancies, and the second 
sum is over the positions of the vacancies within Ap + ~, a square of q + m 

sites on a side. The upper limit on m is mmax  = [ (b (T ) /2 -1 )x /p+  1] 
(largest integer), so that for m =m . . . .  Ap+~ = Ab2p/4. The superscript "c" 
on the second sum denotes a connectivity constraint: only configurations in 
which the set of occupied sites, A p + v \ { x  1 ,..., xv}, is connected by a network 
of nearest-neigbor bonds are permitted. 

There is a many-to-one correspondence between vacancy con- 
figurations )7= {21 ..... 2,} in Z'p, and the particle configurations X =  
{xl ..... xp} in Z~', where X =  Ap+~\X. (More precisely, the correspondence 
is between J( and an equivalence class of X's differing solely by a uniform 
translation. Each equivalence class occurs exactly once in Zp'.) In Z~, J( is 
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assigned energy - 2 ( p - v ) +  U(J?). The correct energy, assigned to X =  
Ap + v\X in Zp, is shown in Appendix A to be 

- k (X)  = - { 2 ( p -  v i , ) -  �89 } + Ui. (2.6) 

where vi. is the number of vacancies enclosed by the perimeter of X, and 
- Ui, is the number of nearest-neighbor bonds between such vacancies. As 
is shown in Appendix A, the difference between - 2 ( p  - v) + U()?) and the 
true energy is 

AE = v e -{- 2vc - 2(alp + m) (2.7) 

where ve and vc are respectively, the number of vacancies lying at edges and 
at corners of Ap+  v. It follows that IAE] <~ 2b(T)x/P- 

For each X occuring in Zp there is at least one corresponding )? in Z'p. 
But since configurations which fit inside Ap + ~ also fit inside larger squares, 
and since vacancy configurations which differ by a uniform translation 
within Ap+ v are counted as distinct in Z'p, there are, in general, several ~ s  
corresponding to a given X. For any of the ( b / 2 - 1 ) ~  + 1 possible m 
values in Z~, there are fewer than p + v(m) translationally equivalent ~ s  
corresponding to a given X in Zp. Thus 

e 2b(T)'fPZ'p'(T) <~ Z'p(T) 

< b 2 ( T )  
4 [(�89 1)x/p+ 1] e2b(r)'/PZp(T) (2.8) 

which implies that for b(T) < oo (i.e., T <  Tc), 

lira p t log Zp(T) = K a ( T  ) (2.9) 
p ~ o O  

2.2. Free Energy  Dens i ty  

We shall use Zp as a basis for deriving a low-temperature expansion 
for tca(T ). Zp resembles the grand partition function of a lattice gas in that 
it is a sum over the number and positions of vacancies, with nearest- 
neighbor interaction U. Expansion of the free energy density in powers of 
e-1/r  is, however, still not straightforward, because of the restriction to 
connected configurations, and the fact that Z~ is not defined with respect to 
a fixed volume. Instead of attempting to apply graph expansion methods 
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directly to Zp, we shall relate tca(T ) to a free energy density for connected 
configurations in a fixed-volume ensemble. The latter may be evaluated by 
considering a lattice gas with many-body interactions. We begin by noting 
that the grand partition function for a lattice gas of N sites (periodic boun- 
dary conditions), with nearest-neighbor, attractive interactions may be 
written in the form 

1 4Nn~Nn 

if(N, T, #) = ~2NI~ U Z 
,=0 (Nn)! 

e - e ( x '  ...... N.)/T (2.10) 
XI,...,XNn~ AN 

where 2 = e u/v, and # is the chemical potential. Nn, the number of vacan- 
cies, takes the values 0, 1 ..... N. We shall denote by Z~ T, #) the r.h.s, of 
Eq. (2.10) with the second sum restricted to connected configurations, as in 
Zp. Define the free energy density associated with vacancy density n 
(n rational) by 

f 
z ( T , n ) -  lim N - 1 1 o g { [ ( N n ) ! ]  -1 ~ e -~(~ ....... ~,)/r} (2.11) 

N ~ 0(3 { XI,...,XNnG A N J 

where N--+ oo through integers N =  q2 such that Nn is an integer. Let the 
r.h.s, of Eq. (2.11) with the sum restricted to connected configurations 
define zC(T, n). From Eqs. (2.10) and (2.11) we have 

~r = lim N l logZ(N,  T,#) 
N--*oo 

L - - [ - 2  - 4n (1 -Tn) # f- z(T, n)] sup 1----7-- + 
0~<n~<l  

2 -  4i(T, #) E l - i f (T ,# ) ]#  
+ +z(T,h(T,#)) (2.12) 

T T 

A similar relation holds between ~cc(T, #)=limN~oo N 1 log SC(N, T, #) 
and zC(T, n), with the location of the maximum defining i~(T, #). 

As p -+ Go, the values taken on by n' = v/p in Zp, Eq. (2.5), become 
dense in the interval E0, b2(T)/4 - 1], and we may write 

lira 
p ~ o O  

p 1 log Zp = + im p-J sup log ~ 2n,pE(n,p)!] 1 
n'>~0 

x e -  u(xl ....... ,p)/T (2.13) 
Xl,...,Xn'p~ Ap(l +n') 
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Let N =  (1 +n')p and n=n'/(1 +n'). Then Eq. (2.13) becomes 

lim p 
p~c~ 

2 
-~ log Zp =-~+ sup lira 

1 n>~ON~Oo 

2 c -- U(xl ...... Un)/T} • e 
XI,...,XNn~AN 

2 . zC(T, n ) -  2n 
=-~+ sup 

I ~>~o 1 --n 

2 z~ ha(T))--2ea(T) 
=-Tq 1 - n a ( r  ) 

[ N ( 1 - n ) ]  11og{3 2N"[(Nn)!]-' 

(2.14) 

~a(T) is the limiting average vacancy density (per site) in animals. To 
determine Ka(T) and tta(T ) we require zC(T, n), which may in turn be found 
once ~cc(T, #) and ~(T,/~) are known. 

The low-temperature expansion for ~co(T, p) may be obtained by 
adding certain connectivity corrections to the expansion for ~(T,/Q. The 
latter is known from series expansions for the Ising model. If ZI(N, T, h) is 
the partition function for a nearest-neighbor, ferromagnetic Ising lattice of 
N sites (periodic boundary conditions), at temperature T and external 
field h, then we have the well-known relation 

,.~(N, T, ]~) = (~/~ ) N / 2 z I ( N  , 4T, 2# + 4) (2.15) 

which implies 

~c(T, #) 1 7 ~  N 1 = - -  + lira log ZI(N, 4T, 2# + 4) 

1+/~ 

2T 
- - - - } -  tci(4T , 2# + 4) (2.16) 

Using results for xi(T, h) derived by Sykes et  aL, (19) one finds that 

2 + # +  
xt/Zrgr(t/) (2.17) ,~(T, ~) = - - -~  

r=l 

where t/= r 1 = e 1/r. The polynomials gr are tabulated for r ~< 15 (square 
lattice) in Ref. 20, and, using the graph expansion methods described in 
that review, one readily finds that g16 =/18 + O(q9), and that gr is of order 
r/9 or higher for r > 16. We shall compute K a to  order t/8, and so the sum in 
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Eq. (2.17) may be truncated at r =  16. On the phase coexistence line, 
2t/2= 1, Eq. (2.17) becomes (19) 

. . . .  (T) = q2 + 2@ + 9t/4 + 12q 5 + 37�89 + 130~/7 + 490~r/8 + ' (2.18) 

The vacancy density in the lattice gas is 

r = l  

and on the coexistence line Ix9) 

. . . .  ( T )  = q2 4_ 4q3 4_ 17r/4 4_ 76r/5 + 357r/6 4- ' "  

(2.19) 

(2.20) 

We turn now to the evaluation of ~cc(T, #). In 2 c only connected con- 
figurations are allowed, and this proves inconvenient from the graph 
expansion viewpoint. To circumvent this difficulty, we introduce many- 
body interactions into the vacancy potential U, so as to exclude disconnec- 
ted configurations. Then S c may be expressed as an unrestricted sum over 
the modified potential, and a low temperature expansion for •c may be 
derived via the Ursell expansion. Define the potential Uc()7) (-~= 
{Xl,..., fen} C AN) such that Uc(J()= U(J?) if the set of occupied sites AN\X 
is connected, and Uc(JT)= + oe otherwise. Replacing U by Uo in the r.h.s. 

[ I I 
I I I 

T 
Fig. 2. Arrangement of four vacancies (open circles) surrounding a particle (filled circles), 

which is excluded by U~. 
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of Eq. (2.10) yields Z~ T, Ft). We shall impose the connectivity constraint 
through the condition: no set of occupied sites may be encircled by 
vacacies. When the vacancy density is low (as it is at low temperatures: 
ri ~ e-2/r), this restriction on the configurations of vacancies within a "sea" 
of occupied sites effectively eliminates disconnected configurations, since 
the vacancies cannot percolate o n  A N for large N. The lowest-order term in 
U c - U  involves four vacancies, and assigns energy +oo to the con- 
figuration shown in Fig. 2. Subsequent terms serve to prohibit six vacancies 
from encircling a pair of occupied sites, and so on. 

As is shown in Appendix B, application of the Ursell expansion (=) 
leads to 

, 2 + #  
~:c(T, # ) = - - - ~ +  ~ )fr/2rgrC(r/) (2.21) 

r = l  

where 

g~=g~, r<~3 

g~4 = g4 - 118 

g~ = g5 - 4/78 - at] 9 -1- 17r/10 

g~ = g6 -- 6r/8 -- 24r/9 + O(r/1~ 

g'~ = g7 --4r/8 - 56r/9 + O(r/1~ ) 

g~ = g8 -- r/8 -- 64r/9 + O(r/1~ 

gCr= gr + O(rl9), r >~ 9 (2.22) 

Using these results, we may derive an expansion 
Eq. (2.12) we have 

&~ n) ,=~c(r,,)_ 4 + p T  

Into this relation we insert the expansion 

z C ( T , n ) = - n l o g n +  Z n~hC(~) 
r = l  

as well as 

for zC(T, n). From 

(2.23) 

(2.24) 

= r~ ?] gr(r l )  
r= l  

(2.25) 

822/44/3 -4-13 
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(Note that, in light of Eq. (2.22), 
coefficients of powers of 2 we find 

ri . . . . . .  = ~ . . . .  + 0( ,8) . )  Upon equating 

h~= 1 

5 h~=2r  2 

h ~ = - 2 r  2+4r  13 6 

h~ = r _ 2r _ 3r _1_ 4r  29 
12 

h ~ = - 8 r  5+29r  4+O(43 ) 

h~ = 2r 7 + 32r 6 + 0(r  5 ) 

h~ = - 34r 8 + 0(r  7) 

h~ = 6r 1~ + 0 ( 4  9 ) 

h~ = r _~_ O(r  

From Eq. (2.14) we have 

(2.26) 

1,1 1 n, Tl}n= a ,227, 

Inserting the expansion ~a = a2,  2+ a 3 , 3 +  ' " ,  and our result for z~(T ,  n), 
one finds, on equating coefficients of powers of , ,  

~a(T ) = . 2 + 4 . 3 +  18 ,4+ 86,5 + 4 3 9 , 6 +  ... (2.28) 

(2.29) 

Note that 

2~a 2~ ... . . .  
zC T , + a j _ ~ = z C  ~ _ _  l . . . . . .  ) T 

_ 1 Q2zC(T, n )  (ft a - h ...... )2 
2 ~ n=~ ...... 

1 ~3z~  n)  ( n .  - n . . . . . .  )3 + 0 ( ,9 )  

Kc, coe x __ ~ . 6  5 8 = - 6 .  7 - 5 3 g "  + O ( .  9 ) 

where we used Eq. (2.12) and our results for z c, no, and na. Using 
Eqs. (2.28) and (2.29) in (2.14), we finally obtain 
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~ca(T)=2+  ~ crt/r 
r=2 

2 ~ 3r/8 = -~-t-- Y/2 + 2yI3 -I - r/4 + 18r/5 + 68 ~ t/3 + 286r/7 -t- 1270 ~ + ... 

(2.30) 

which is the desired low-temperature expansion for the animal free energy 
density. 

A simple approximation for the animal free energy density at low tem- 
peratures is 

2 ~c .... (T) 
~ca(T) T -  1-r~ . . . .  (T) (2.31) 

Such an approximation was employed by Jaccuci et al. (17) in comparing 
Monte Carlo calculations of cluster (animal) free energies with the predic- 
tions of a modified droplet model. Equation (2.31) effectively treats animals 
as if they were subject to a finite pressure (the coexistence pressure in the 
lattice gas), whereas, by definition, animals exist at zero pressure. 
Moreover, the above approximation ignores the connectivity constraint. 
Nonetheless, Eq. (2.31) is an excellent approximation at low temperatures. 
Inserting Eqs. (2.18) and (2.20), we find that 

]~ .... (T) _712 ~ ~ 7 l - - f i  . . . .  (T) +2 t /3+  r /a+18t /5+67 r/6+280r/7+1232 r / 8 + ' "  

2 1 lq8 = lea(r) - - ~ - -  ~ t/6 -- 6~/7 - 38 g + . . .  (2.32) 

Even for T=0 .5  (T/To~-0.93) ,  the two expressions for ~ c a - 2 / T  differ by 
less than 0.05 %. 

2.3. Col lapse  T rans i t ion  

One expects the animal free energy density, ~c a to be singular at To, the 
collapse transition temperature. Thus the radius of convergence of the low- 
temperature expansion, Eq.(2.30), should be given by q o = e  -1/T~. We 
estimate the radius of convergence by examining the ratios, vn = cn/cn 1, of 
successive coefficients in the series (see Fig. 3). The last four ratios fall close 
to a line of the form 

. v(, 

In Table I we list the estimates for v, T c = (log v) 1, and b, obtained by 
extending line segments connecting successive pairs of points to the n = oo 
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I I I I 

.2 .3 

Fig. 3. Ratios, v,, of successive coefficients in the low-temperature expansion of the animal 
free energy density, Eq. (2.30), versus 1In. 

Tab le  I. Es t imates  o f  Cr i t i ca l  Pa rame te r s  
B a s e d  o n  R a t i o s  o f  S u c c e s s i v e  C o e f f i c i e n t s  in 

Eq. (2.30)  

Interval v Tc b 

4-5 5.3636 0.595 1.9492 
5-6 6.4141 0.538 2.4488 
6-7 6.5198 0.533 2.5064 
7-8 6.2479 0.546 2.3073 



Collapse Transition of Lattice Animals 477 

axis. The average of the last three estimates yields To ~-0.54. Due to the 
shortness of the series, it is difficult to judge the uncertainty of this 
estimate. As 1/ approaches r/o from below, the singular part of the animal 
free energy density scales as ~ca, sing oc(1-qfllc)  b 1. The specific heat per 
particle is 

ca(T ) = T -2 F63~Za 02tr 
k &/ + r/~~q2 J (2.34) 

and so the specific heat critical exponent is ~ = 3 -  b. The last three inter- 
vals in Table I yield the estimate: c~_ 0.58. 

A phenomenological renormalization study by Derrida and 
Herrmann (6) furnished the estimates: T c =0.535___ 0.005, and c~ _~ 0.48. A 
Monte Carlo study by the present authors (7) generated specific heat data 
(for animals of 100 or fewer particles) which was consistent with the 
Derrida Herrmann estimate for T c. Thus the collapse temperature of 
square lattice animals has been estimated by three independent methods, 
and the results are mutually consistent. Owing to the shortness of the 
presently available series, the expansions for the animal specific heat and 
vacancy density do not yield useful results regarding critical behavior, 
when analyzed using either ratio or Pade approximant methods. 

In Ref. 7 it was remarked that the collapse temperatures of both 
square and triangle lattice animals (Tc-~0.54 and 0.90, respectively) are 
close to the critical temperatures (Tcr -~ 0.567 and 0.912, respectively) of the 
corresponding lattice gases. This is not surprising, given the close relation 
between the low-temperature expansions for the free energies of animals, 
and of the lattice gas on the coexistence line, revealed in our analysis. 
Animal collapse and the lattice gas critical point are, of course, 
qualitatively different transitions, characterized by different critical 
exponent values. 

3. N U M E R I C A L  T E S T  OF S C A L I N G  

In Ref. 18 we proposed and presented preliminary numerical evidence 
for a scaling formula for ap, k: 

log O'p, k ~ Cro(P ) f E  x ( p  , k)] (3.1) 

where 
ao(p)  = ap - 0 log p + c (3.2) 

with a - limp ~ o~ P -  ~ log Z k  ap.k, and, for square animals 

k - p + l  
(3.3) 

x -  P--  2x//p + 1 
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So defined~ x takes values in r0, 1 ] as k varies between p -  1 and km(p) = 

[2(p - x/P)],  the maximum possible number of bonds for a square animal 
o fp  particles. The term oc x ~  in the denominator of Eq. (3.3) reflects the 
surface bond defcit: Eq. (3.1) represents an attempt to describe both bulk 
and surface effects by means of a single scaling function. 

Using Monte Carlo and enumeration methods described in Refs. 7 
and 18, we have generated accurate estimates for ~p,k for square animals of 
up to 100 particles. To test the scaling hypothesis, we plot 

log ap,~ (3.4) 
f p ( X )  - supk log Crp, k 

versus x in Fig. 4. The data for p/> 36 is presented here for the first time; 
our earlier study of scaling (18) included data for p~<32 only. An 

.6 

.4 
o p=25 
~' 30 
o 36 
v 40 
z~ 45  
�9 5 0  
�9 5 5  

�9 6 4  

�9 1 0 0  

.2 

A u l  ~ 

. \  

\ 

\ 
I I I 

.8 1.0 
I I I ~ I I 

0 .2 .4 .6 
X 

Fig. 4. fp(x), Eq.(3.4), versus x, Eq. (3.3), for square-lattice animals. 
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approximate scaling of the data is evident from the plot. Of interest is the 
accuracy with which the data may be fit by a simple, phenomenological 
scaling function. The solid line in Fig. 4 is of the form 

f ( x )  = A(1 -- x)~[1 -- a(x -- z) 2 + b(x - -  z) 3 ] (3.5) 

The parameters were adjusted via a least-squares procedure, yielding, for 
the p = 55 data, the values 7 = 0.6, a = 0, b = 0.73, and z = 0.58. (The prefac- 
tor A is fixed by the condition that f attain a maximum value of 1.) For 
10 ~< p ~< 100, the free energies calculated from Eqs. (3.1)-(3.3), with f given 
by Eq. (3.5), agree to within 1% with the Monte Carlo estimates. However, 
we do not believe that Eq. (3.5) is the correct asymptotic scaling function. 

Despite the approximate scaling behavior, the fp(X) data do not 
appear to converge to an asymptotic scaling function. This is particularly 
striking when a comparison of the p = 64 and p = 100 data points is made. 
Now, if the scaling formula, Eq. (3.1), correctly described surface effects, we 
would expect fp(x) to converge to a limiting function, f (x) ,  such that 
[ fp (x ) - f ( x ) [  ocp -r with ~> 1/2. [That is, the corrections to Eq. (3.1) 
should be oXfp). ] However, a plot Offp(X) (for a given, fixed x), versus pl/2 
reveals no clear trend. Analysis of the data in accordance with Eqs. (3.3) 
and (3.4) does not permit estimation of the asymptotic scaling function. 

In light of these observations, we believe that it is not possible to 
devise a scaling formula which incorporates surface as well as bulk effects 
in a single function. We shall focus instead on the bulk scaling behavior. In 
Appendix C we prove the asymptotic scaling formula 

(p ~ oe) (3.6) 

where ~ is concave (hence continuous) on the rationals in [1, q/2); (q is the 
coordination number of the lattice). The numerical data may be used to 
estimate the bulk scaling function as follows. Define a new scaling variable 

k - p + l  
y = (3.7) 

P 

and let 

log ap,~ (3.8) 
gP(Y) =- SUpk log Crp, k 

For convenience, the scaling variable y has been chosen to lie in [0, 1], 
with trees (k = p - 1 )  always corresponding to y = 0. Since y ~ k i p -  1 
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when p ~ o% we expect gp(y) ~ g(y)  - a - l~(y  q.. t ) when p --, oe. The data 
for ap,k furnish gp(y) for y = 0 ,  lip ..... ( k m ( p ) - p +  1)/p. We extend the 
definition of gp to intermediate y values via linear interpolation. In Fig. 5 
gp(y) is plotted versus p-1 for various values of y. For y ~ 0.65, the points 
converge rapidly to a straight line, whose intercept with the p = oe axis 
furnishes an estimate for the asymptotic scaling function, g(y). For larger y 
values there is not sufficient data to permit accurate extrapolation. Our 
numerical estimate for g(y)  will be discussed in the following section. 

A consequence of the scaling formula, Eq. (3.6), is that asymptotically, 
the number of animals Ap,c with p particles and cyclomatic index c (the 
number of independent, closed paths through nearest neighbor bonds) 
grows at an exponential rate which is independent of c. Since animals are 

gp(Y) 

.8 

.6 

.4 

.2 

I I I r 

p4 .03 .02 .01 

Fig. 5. gp(y), Eq. (3.8), versus 1/p. 

I l I I 
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connected, Euler's theorem implies that a p-particle, k-bond animal has 
cyclomatic index c = k -  p + 1. Thus Ap, c = O 'p ,p  + c -  1, and from Eq. (3.6) 

_ { p + c - 1 )  
p- l logAp,c~g~.  P + o ( 1 ) ~  ~(1) - ag(0) (3.9) 

which shows that the asymptotic rate of growth is indeed independent of c. 
Whittington et aL ~1~ proved the corresponding result for the rate of growth 
of the number of weak embeddings. 

4. A S Y M P T O T I C  S C A L I N G  F U N C T I O N  

In the preceding section we used numerical data for crp, k to estimate 
the asymptotic scaling function, g(y). Using the low-temperature expansion 
for the animal free energy density derived in Sec. 2, we may derive an 
expansion for g(y) in the neighborhood o f y  = 1. Note that from Eqs. (3.6) 
and (3.7) 

~ca(T)= l i m p  1log dyexp p - - f - + a g ( y )  
p ~ o O  

e(r) 
- ~- a g [ - g ( T ) -  1] (4.1) 

T 

where g(T) is the average energy per particle. From Eq. (2.30) we have 

dK~( T) 
~( r )  - 

d(1/T) 

= - 2 + 2r/2 + 6r/3 + 22r/4 + 90t/s + 410t/6 + 2002r/7 + 10166t/s + "'" 

(4.2) 

Combining Eqs. (4.1) and (2.30), we have 

g 2 I12 ag( --,~ -- 1 ) = - ~ + - ~  + + 2r/3 + "'" (4.3) 

Now since t + g/2 = t/2 + 3r/3 + - . . ,  it follows that 

g 2 
- ( l  + 2 )  log ( l  + 2 )  = ~ + - ~ +  O(t/3) 

which suggests that g has the form 

a g ( -  ~ -  1) = - u log u + al u + a3/2//3/2 _]_ a2u2 + . , 0  

(4.4) 

(4.5) 
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where u =  1 + e / 2 =  ( 1 -  y)/2. Half-integer powers of u are included in 
Eq.(4.5) because ( l+g /2 )n /2=t ln+O(qn+~)+ " " ,  while Eq.(4.3) is an 
expansion in powers of t/. There is no term ~ u m since the right-hand side 
of Eq. (4.3) has no term ,-~r/. Substituting the above expansion into 
Eq. (4.3) and equating coefficients of I/yields 

3 u5/2 ~ / 2  3 "qt-'-~ --bt1487 7/2 --31 /24 trg(y) = - - u l o g u + / 2 + 2 u 3 / 2 + u 2 + - ~  + + .. .  

(4.6) 

The first two terms of this expansion may be derived via a simple entropy 
of mixing argument applied to a collection of noninteracting vacancies. The 
higher-order terms include effects of the vacancy pair potential, Uc. Since 
Eq. (4.6) was derived from the low temperature expansion for Ka(T), we 
expect it to be valid for the compact animal regime, y > yo, where Yc is the 
y value corresponding to g(Tc). Employing the estimate Tc=0.54 in 
Eq. (4.2) yields g(To) = - 1.87, so that y~ - 0.87. 

In Fig. 6 we plot the asymptotic scaling function g(y).  For y ~< 0.65, g 
is estimated from the ap, k data (broken line). The other branch (solid line) 
is given by Eq. (4.6), using the Sykes-Glen estimate ~H) a =  1.401. We 
propose the following interpretation of Fig. 6. The small-y branch (broken 
line) represents a portion of the scaling function for noncompact or 

.8 

.6 

.4 

.2 

0 .2 .4 

%%% 

%%% 

I I 

.6 .8 y 

I I 
g 

Fig. 6. Asymptotic scaling function, g(y), versus y. Solid line: Eq. (4.6) with cr= 1.401. 
Broken line: extrapolation from finite-p data. 
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ramified animals, while Eq. (4.6) describes the compact regime. We expect 
the two branches to join smoothly at y~. The meeting point marks the 
collapse transition, and since this transition is second order, (6/ we expect 
d2g/dy 2 t o  vanish at this point. (~8) Our interpretation is supported by the 
fact that the two branches of g(y), computed by different methods, are 
nearly in agreement for y ~- 0.6. However, numerical data for larger animals 
(p > 100) will be required in order to determine g(y) in the neighborhood 
of yo. A systematic high-temperature expansion, as well as additional terms 
in the low-temperature expansion for t e a ( T ) ,  would also be valuable for 
understanding critical and scaling behavior. 

A P P E N D I X A :  B O U N D  ON THE ENERGY ERROR IN Zp 

Let X =  {Xl ..... xp} ~ Z  2 be an animal configuration, with perimeter 
F(X) and perimeter length B(X). (We assume that p = n 2, n an integer.) 
F(X) encloses p occupied and vin vacant sites. For x ~ X, define the valence 
v(x) as the number of occupied nearest neighbors of x. The total number of 
nearest-neighbor bonds in X is 

k (X)=  1 ~ v(x) (A.1) 
x E X  

Suppose that all p + vin sites within F(X) were occupied. Then, since there 
are exactly B(X) lattice bonds from sites within F(X) to sites outside F(X), 
the sum of the valences of the sites within F(X) would be 4(p + Vin) -- B(X). 
If the sites 21 ..... 2~ n, enclosed by F(X), are now vacated, a total of 4Vin + 
U(21 ..... 2v~n) bonds are lost. The number of nearest-neighbor bonds in X is 
therefore given by Eq. (2.6). 

Now suppose that X c  Ap+v, a square of side ~ + m. The total num- 
ber of vacant sites in Ap+v, v = Vin-b rout, is the cardinality of X - A p +  v\X. 
Let X~n and -~out denote, respectively, the portions of )[ lying within and 
outside of F(X). By construction, if 2 ~ g i n  and 2' ~ )~o~t, then 2 and 2' can- 
not be nearest neighbors, and so U(.Y)= U()(in)+ U(Xom)--Uin+ Uo~t. 
Thus 

AE-  - 2 ( p - v ) +  U(s gout-�89 (1.2) 

For 2eJ?ou~, let v(2) be the rmmber of sites in )(out which are nearest 
neighbors of 2. Then since -Uo~t is the number of nearest-neighbor pairs 
within J?out 

__ 1 
U o u t - -  - - 2  Z v(2)=--2Vout+�89163 ( A . 3 )  

2 ~ )~out 

where B(J(om) is the sum of the lengths of the perimeters separating -~out 
from X and from Z2\Ap+,,. (Xout may consist of several components which 
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are not  connected . )  We m a y  write the to ta l  per imeter  length of )7out as 
B(X~out)=Ve+2vc+Bi, where vr and  v c are, respectively,  the n u m b e r  of 
vacancies  lying at  edges and  coners  of  Ap+v, and Bi is the length  of the 
po r t i on  of  F(X) which lies within Ap +,,, i.e., the length of 

F ( X ) \ [ F ( X )  n F(Ap+,,)] (see Fig. 7). Thus  Bi = B(X) - pr - 2pc, where Pe 
and  Pc are, respectively,  the n u m b e r  of  occupied  sites at  edges and  corners  

of Ap +,,. Since ap +~ is a square  of  side ~ + m, Pe + ve = 4 [ x f p  + m - 2 ],  
and  no t ing  tha t  p o = 4 - v c ,  we have B ( X ) - B i = 4 ( f , / - p + m ) - v : - 2 v o .  
Thus  

Uou t = - 2Vou t + 1B(X) -- 2 ( x / p  + m) + ve + 2vc (a .4 )  

C o m b i n e d  with Eq. (A.2), this yields Eq. (2.7). 

A P P E N D I X  B. 
L O W - T E M P E R A T U R E  E X P A N S I O N  F O R  K c ( T )  

W e  a p p l y  the Ursel l  expans ion  to the eva lua t ion  of 
1 ~--4Un~Un 

~cc(T, U ) =  l im N l log ~2N2 U ~ ( N n ) ~  
N ~ o o  n ~ 0  

x ~ e - -  U c ( x l  ...... Un)/T] 

XI,...,XNn G A N 
(8.1) 

0 0 0 0 0 0 

0 �9 �9 [ 0 0 0 

0 0 

0 0 

0 

�9 �9 �9 �9 

�9 �9 

�9 �9 �9 �9 ~ 0 

�9 0 

0 

Fig. 7. An animal configuration X (filled circles) contained within a square, Ap+v. The 
perimeter of Ap+,, is indicated by the broken line, and the perimeter of X within Ap+, is 
indicated by the solid line. For this configuration, p = 16, k = 18, B = 28, v = vo, t = 20, v e = 12, 
vc = 3, and Uout = - 20. 
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Our treatment follows the approach of Ref. 22. Let 

i zm 

~ ( N ,  T, z)= m---~. 
m = O  

e-~(x~ ....... )/r (B.2) 
Xl ,..., Xm ~ AN 

be the grand partition function for a lattice gas of N sites, at temperature T 
and fugacity z. The potential, 05, may include many-body interactions. The 
Ursell expansion for the free energy density is 

lim N-11ogZe(N, T,z)= ~, br(T) S (B.3) 
N ~ a c  r = l  

where 

1 
b r ( r )  = r~ ~ u(xl ' ""  x r )  ( B . 4 )  

x I =O;x2,...,xrGZ 2 

(We assume that the potential 05 is such that the limit in Eq. (B.3) exists. 
For  the potentials U and U~ this poses no problem). To define u(x~ ..... xr) 
we introduce 

w(xl) - w l  = 1 

W ( X l ,  X 2 )  ~- W12 = e ~(x~,x2)/r 

w(x~, x2, x3) - w~23 = e e(x,,x2,x3)/r (B.5) 

etc. Then b/ (X 1 . . . . .  Xr) is the sum over all possible products of w's, such that 
the subscripts on the w's run through {1 ..... r} with each index occurring 
exactly once. A product of k factors has the coefficient ( - 1 ) ~ - l ( k - 1 ) !  
Thus 

U(Xl ,  X 2 )  = W12 - -  W1W 2 = W12 - -  1 

U(Xl, x2, x3) = w~23 - w~2 - w23 - w~3 + 2 
(B.6) 

etc. We note that if X =  {xl ..... Xr} can be divided into subsets X1 and X2 
such that 05(X)-05(X1)+ 05(X2), then u(xl ..... Xr)=0.  We call such con- 
figurations "05-disconnected." 

Comparing Eqs. (B.1) and (B.2), we see that Eq. (2.16) holds if we let 
gr ~ = ~/2rb~, where b c is given by Eq. (B.4) with 05 = Uc. (If we let 05 = U we 
obtain Eq. (2.11), where gr  = gl2rbr. ) Since U and Uc are identical for con- 
figurations of three of fewer vacancies, gr ~ = gr for r ~< 3. In evaluating the 
sum over configurations in Eq. (B.4), it is helpful to introduce a graphical 



486 Dickman and Schieve 

notation. We represent each vacancy by a dot, join dots representing 
nearest-neighbor pairs by a straight line ( , - - - ~ ) ,  and join dots 
representing vacancies occupying the same site by a wavy line (---------~). 
We denote a quartet of vacancies encircling an occupied site by 

A 
/ \ 

< > 
N / 

Each Uc-connected r-point graph makes a contribution to b r which is a 
product of: (1) a labeling factor--the number of distinct ways of assigning 
the labels 1 ..... r to the points; (2) an embedding f a c t o ~ t h e  number of 
translationally nonequivalent arrangements in the lattice which realize the 
bonding structure; and (3) u(xl,..., Xr). TO compute g~-- gr we identify the 
r-point graphs which involve a many-body term in U c -  U, and evaluate 
the factors listed above. For r = 4 ,  the only graph is the one depicted 
above, and its contribution to g ~ - g 4  is - - t / 8  . For r =  5 the graphs and 
their contributions are listed below: 

Graph Contribution gO_ 5 g 5  

< 
Aj 

/ \ _4r/8 + 4r/m 

\ / 

v 

< 

A 
/ 

x,r 

\ 

/- : --4r/9 + 4r/1~ 
/ 

< 

< "I"'. ,L" \ / 

8r/1~ 

~/lO 
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(Note that in the configuration 

2 

1< 93 

\ / 

4 

Uc(Xl ,  x2,  x3,  x4 )~ -  -~00, b u t  Uc(Xl ,  x2 ,  x3 ,  x4,  x 5 ) =  - 4 .  T h e  full c o n -  

figuration does not violate connectivity.) Hence g~ - g5 = - 478 - &/9 + t/~o. 
The remaining terms in Eq. (2.17) are obtained in the same manner. 

A P P E N D I X  C. A S Y M P T O T I C  S C A L I N G  F O R M U L A  

Let ~rp, kL be the number of translationally nonequivalent p-particle, k- 
bond animals in lattice L. In Ref. 18 we showed that for p - 1  ~ k ~ k m ( p )  
(and for k' and p '  similarly related), 

L L L 
O'p + p ' ,k  + k '  *. 1 "~ (~p,k Op ' , k  ' (c.1) 

In Ref. 21 we showed that if L is the square, triangle, hexagon, simple 
cubic, body- or face-centered cubic lattice, then there is a finite constant 
c(L) such that ffp,kL < e c(L)p. According to a result in the theory of sub- 
additive functions, (23) if Yp ( p =  1, 2, 3,...) is a sequence with Y1 >0 ,  and 
Yp + p, ~ Yp Yp, and if yp _= p 1 log Yp < c < oo, then limp ~ ~ yp exists. 

Let r and s be positive integers such that q/2 > sir ~ 1 (q is the coor- 
dination number of the lattice). Then the results cited above imply that 

lim n-1 L ( r  ~ log cr . . . . . .  1 -= rgL (C.2) 
n~oo J 

exists. Thus as n --* oo 

L ~Hr~,L(;l_[_o(n) (C.3) log (T nr,n s 1 

We may recast Eq. (C.1) in the form 

L L L 
O'nr,ns 1 "~ ~n t ,nu  1 f f  n(r -- t),n(s u) 1 (C.4) 

If we take the logarithm, divide by nr, and use Eq. (C.3), then in the limit 
n --* Go we obtain 

(:) +"-' (c.5) gL \ r /  r g,L r 
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If we now let x = u/t, y = (s - u)/(r  - t), and a = t/r, we find 

~,c[ax + (1 - a) y ]  >>, a~,L(x) + (1 - a) ffL(Y) (C.6) 

for x, y, and a rational, x, y e  [1, q/2),  and lal < 1. Thus gc is concave, 
hence continuous, on the rationals in [1, q/2). Letting n r = p ,  n s - 1  =k ,  
and using the continuity of gr,  we may rewrite Eq. (C.3) as 

ap,k ~ P g L  + o (p )  (p  ~ ~ )  (C.7) 

which is the desired scaling formula, gL may be extended to [1, q /2 ]  by 
continuity, but for the study of animal statistics, its restriction to the 
rationals in this interval is sufficient. 
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